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ABSTRACT: In the waste recycling Monte Carlo (WRMC) algorithm," multiple trial states may be simultaneously generated and
utilized during Monte Carlo moves to improve the statistical accuracy of the simulations, suggesting that such an algorithm may be well
posed for implementation in parallel on graphics processing units (GPUs). In this paper, we implement two waste recycling Monte Carlo
algorithms in CUDA (Compute Unified Device Architecture) using uniformly distributed random trial states and trial states based on
displacement random-walk steps, and we test the methods on a methane—zeolite MFI framework system to evaluate their utility. We
discuss the specific implementation details of the waste recycling GPU algorithm and compare the methods to other parallel algorithms
optimized for the framework system. We analyze the relationship between the statistical accuracy of our simulations and the CUDA block
size to determine the efficient allocation of the GPU hardware resources. We make comparisons between the GPU and the serial CPU
Monte Carlo implementations to assess speedup over conventional microprocessors. Finally, we apply our optimized GPU algorithms to
the important problem of determining free energy landscapes, in this case for molecular motion through the zeolite LTA.

1. INTRODUCTION

With the introduction of multicore chips, a new paradigm of
scientific computing has emerged in which scientific application
codes took advantage of on-chip parallelism provided by the
hardware. As computing capabilities move toward an era of
exascale computing, various hardware, such as many-core CPUs,
GPUs, and CPU—GPU fusion architectures are emerging to
provide the next important shift in the area of high performance
computing. Originally intended to handle computation for
graphics, GPU scientific computing has introduced new paralle-
lization techniques that are being utilized in solving scientific
problems. Compared to CPUs, GPUs have more transistors
devoted to data processing as opposed to cache memory and
loop control, and accordingly programs that can be efficiently
mapped onto this multithreaded hardware can see significant
performance improvement. To achieve efficient computations,
the GPU and CPU can work together in a heterogeneous
coprocessing computing model where the sequential part of
the code can be executed inside the CPU while the computa-
tionally intensive massively parallel part of the code can be
accelerated inside the GPU. Traditionally, GPUs have been used
mostly for graphics intensive applications but the release of
NVIDIA’s CUDA has allowed programmers to use C-like syntax
language for code development, extending its utility for scientific
computing.” Thus far in computational chemistry, there has been
substantial GPU code development in both molecular dynamics
(MD)? and Monte Carlo (MC) simulations.* ¢ MC simulations
are very similar to MD, and as such, many of the techniques
developed for molecular dynamics simulations such as neighbor
lists and cell lists” can also be used in a Monte Carlo simula-
tions. However, for some systems for which molecular dynamics
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simulations can be extremely time-consuming or simply not
feasible, special Monte Carlo algorithms can make these simula-
tions orders of magnitude more efficient.” Of particular interest
are simulations of open systems, which rely on the addition or
removal of particles. Such systems can be conveniently simulated
in the grand-canonical ensemble using a Monte Carlo simulation.
In this paper, we shall focus on techniques to accelerate the MC
simulations of molecular systems on the GPU that expand beyond
the acceleration present in typical GPU-based MD codes.

In essence, this paper seeks to address the broad question of
how we may best leverage GPU resources in conducting molecular
Monte Carlo simulations. Here, we consider three alternative
avenues to accelerating convergence of a simulated thermody-
namic property—the average energy per molecule. We then
apply these acceleration strategies to the estimation of free
energies, an important and difficult goal of molecular simulation.
The three strategies are orthogonal and involve (1) an embar-
rassingly parallel implementation of many side-by-side Monte
Carlo simulations, (2) the parallelization of the pairwise summa-
tion of Lennard-Jones (L]) interactions, and (3) the use of multi-
proposal Monte Carlo coupled with waste recycling on the
rejected states. The first avenue, embarrassingly parallel simula-
tions, is certainly available to both molecular dynamics and
Monte Carlo simulations; however, the small number of mobile
molecules in these Monte Carlo simulations make this paralle-
lization strategy tractable. The motivation for this approach lies
in using each GPU thread to gather as much independent
statistics as possible. The second avenue, parallelization of the
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pairwise summation of L] energies, is more pertinent to MC
simulations, while in principle being amenable to MD simula-
tions. While the LJ pair potential is employed in molecular
dynamics simulations, there are two distinctions in its application
in these MC simulations. For MD, all particles are moved at each
time step, requiring a reevaluation of all pair forces at each time
step, while in MC, one particle is moved for each MC step,
resulting in fewer pairs contributing to changes in interactions at
each step. Furthermore, as MC is only concerned with changes in
the total energy of the system, reduction on the GPU of the sum
over pair interactions results in a single systemwide energy, rather
than distinct forces applied to each individual particle, resulting
in a simpler reduction algorithm. These factors combine to yield
a simplified parallelization scheme for L] interactions. The goal of
this approach is to conduct each single, traditional Monte Carlo
step as quickly as possible. The third avenue, multiproposal MC
combined with waste recycling, is also available solely to MC
simulations and is an option for the use of computing power
which is wholly novel. In essence, the threads of the GPU are
employed to propose many possible new states at each MC step,
and waste recycling is employed to harvest as much information
from both the chosen state and the rejected states. Waste
recycling has been employed in tandem with molecular dynamics
previously through the use of multiple time slice estimators.® The
route to parallelizing such an approach would rather focus on the
energy and the force evaluations of the proposals that are
generated successively by the molecular dynamics, while multi-
proposal MC algorithms are inherently parallelizable.

At this point, we would like to emphasize that the above
techniques are generally applicable. However, as in any Monte
Carlo simulation, the efficiency depends very much on the details
of the system. Therefore, we illustrate the application of these
techniques to a system of practical importance, methane ad-
sorbed in the zeolites MFI (silicalite) and LTA. Zeolites are
nanoporous materials important in catalysis and separations for
(petro)chemical processes, and molecular simulation has proven
invaluable in evaluating the thermodynamics and kinetics asso-
ciated with molecular absorption and motion through zeolites.”
For these systems, the pores can slow down the dynamics of the
adsorbed molecules by orders of magnitude, making the use of
Monte Carlo techniques crucial. In addition, adsorption iso-
therms are conveniently calculated in the grand-canonical en-
semble, which requires the use of Monte Carlo simulations.

The paper is organized as follows. In section 2, we describe the
molecular modeling and Monte Carlo simulation of methane
adsorbed in zeolites. In section 3, we outline the mapping of the
methane—zeolite system onto a GPU. In section 4, we describe in
detail our GPU Monte Carlo algorithms as well as provide
optimization techniques utilized in each of the different paralleliza-
tion methods. In section 5, we present results of our simulations
for the methane—MEFI system for the different parallelization
approaches, and we discuss the merits of each approach. We also
apply our GPU acceleration schemes to determining the free
energy profile of methane adsorbed in the LTA zeolite. Finally, in
section 6, we summarize the important issues mentioned in the

paper and briefly look ahead to future work.

2. ZEOLITE SIMULATIONS

2.1. Molecular Models for Zeolites. Zeolites are nanoporous
crystalline materials. At present, there are over 200 different
crystal structures, each with a different pore structure. The size of
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(a) MFI containing methane {b) LTA

Figure 1. Snapshots of two zeolites with oxygen in red and silicon in
gray. The adsorbate methane is shown only in MFI with carbon in black
and hydrogen in white. Each zeolite is viewed from the (100) axis and
contains a total of eight unit cells. The front four are opaque, and the
back four are transparent. The LTA simulation box is composed of eight
supercells connected to each other in the «, y, and z directions via
windows of smaller radius and higher free energy. The high symmetry of
this structure allows us to visualize these passageways relatively easily. In
the snapshot of LTA, the four opaque quandrants of the zeolite cor-
respond to the front four supercages of the zeolite, viewed through the
frontmost windows shown with thicker bonds. MFI is composed of zigzag
and straight channels. The 10 methane adsorbates are most visible along
the (100) axis in this instantaneous configuration at locations within the
zigzag channels directed along the x axis. However, the channels
themselves are not visible in completion due to their kinked nature.

these pores ranges from a few angstroms to 2 nm. In this work, we
study MFI (Figure 1a) and LTA (Figure 1b), which are both
frequently studied materials."®~

These two zeolites present markedly different pore topologies.
MFI is composed of intersecting straight and zigzag channels.
The snapshot in Figure la shows methane molecules adsorbed
within zigzag channels, and these channels are not easily visible.
In contrast, LTA is composed of an intersecting structure of large
cages with narrower windows connecting them in all three
directions, resulting in a simple cubic lattice of cages with free
energy barriers to diffusion across each window. Figure 1b clearly
displays the four frontmost cages with four posterior cages in
lighter coloring.

Monte Carlo simulations have been crucial in studying these
zeolite systems. In assessing molecular adsorption isotherms, Monte
Carlo simulations are necessary in order to allow for particle number
varying with applied chemical potential via grand canonical simula-
tions. Furthermore, Monte Carlo simulations provide a strai§htfor-
ward route for calculating the free energy barriers to diffusion.” "' In
this work, we focus on accelerating canonical MC simulations for
methane in the zeolites MFI and LTA, but the lessons gleaned from
this study can be broadly applicable to grand canonical simulations
of this system and MC simulations of other molecular systems.

The focus of this work is on canonical (NVT) Monte Carlo
simulations where the number of particles (N), volume (V), and
temperature (T) remain the same throughout the simulation.
Our predominant system of interest consists of methane mol-
ecules within a zeolite framework, which we assume to be rigid.
The force field is parametrized using the conventional assump-
tions: the zeolite framework is rigid, and the interactions are
dominated by the oxygen atoms in the zeolite framework. The
number of methane molecules is varied for different sets of
simulations while the number of framework oxygen atoms
remains fixed, leading to different loadings of the framework
and different effective densities of the methane molecules. In all
simulations, the temperature is fixed to 300 K.
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For each zeolite simulated, the simulation box is comprised of
eight (2 X 2 x 2) unit cells. The three-dimensional MFI crystal
unit cell has dimensions of 20.022 A x 19.899 A x 13.383 A and
contains 288 framework atoms. The MFI simulation box con-
tains a total of 2304 (1536 oxygen and 768 silicon) atoms. The
LTA crystal unit cell is cubic with a side length of 12.278 A. There
are 72 framework atoms inside this unit cell, resulting in a total of
576 (384 oxygen and 192 silicon) atoms in the simulation box.

Interaction between methane molecules (i.e., methane—
methane) and between methane molecules and the zeolite (i.e.,
methane—oxygen) is modeled on a pairwise basis by the Lennard-
Jones potential:

o-|(0) -]

where r is the distance between two particles, € indicates the
depth of the potential well (148.0 K for methane—methane and
115.0 K for methane—oxygen),'"'* and o represents the effec-
tive core size of the particles with the potential well located at
2"/%0. The o for methane—methane interactions is 3.73 A and
that for methane —oxygen interactions is 3.47 A.""'* In all cases,
the Lennard-Jones interaction is shifted to zero for r > R by the
subtraction of U(R..) from U(r) forall r < R. = 12 A.

Periodic boundary conditions are imposed, and each dimen-
sion of the simulation cell is chosen to be greater than 2R.. This
allows the determination of various properties of the molecular
system through simulation of only a small subset of the entire
system. As a consequence of this and through the representation
of the zeolitic framework via an energy grid as discussed in
section 3.2, the Monte Carlo simulations conducted in this work
consist of only a small number of molecules. The largest system
contains 128 methane molecules.

2.2. Monte Carlo Simulations. Here, we give a brief summary
of the Monte Carlo techniques employed, deferring discussion of
most algorithmic details until section 4. For both the embarras-
ingly parallel Monte Carlo simulations and the MC simulations
using parallelized calculation of Lennard-Jones interactions, we
simply conduct standard Metropolis Monte Carlo.” In  this
approach, an adsorbate molecule is chosen at random and moved
by a random displacement chosen from [—dp.o+dmax] in each
direction, generating a new state n by displacement from the old
state n. The change in energy AE is calculated, and the move is
accepted or rejected by the Metropolis acceptance criterion:

accyr(0 = 1) = min[1, exp(—[BAE)] (2)

We also implement two waste recycling Monte Carlo algo-
rithms. The idea of using information of rejected moves in Monte
Carlo simulations was first explored by Frenkel in his waste-
recycling Monte Carlo scheme." The principle idea of waste
recycling is that all rejected states in a Monte Carlo simulation do
carry some information, and and when included with their proper
Boltzmann weights, they can improve the statistics. Delmas and
Jourdain'® have in fact proven that when MC is conducted with
the symmetric Boltzmann or Barker acceptance criterion,

exp(iﬁEn)
eXp(_ﬁEo) + exp(_ﬁEn)

(3)

accg(o — n) =

waste recycling is guaranteed to lead to faster convergence of
statistical properties.

The waste-recycling method is inherently parallelizable in the
sense that you may generate multiple trial states for a single
Monte Carlo step, as done by Frenkel," and accordingly is suited
to simulate using a GPU. It is therefore interesting to investigate
whether the combination of GPU with waste recycling is an
attractive route for Monte Carlo simulations. The multiproposal
algorithm suggested by Frenkel is most readily applied when new
particle positions are chosen randomly throughout the entire
simulation box, as discussed in section 4.3. However, with care,
an analogue based on particle displacements may be constructed,
as in section 4.4. For readers familiar with configurational bias
Monte Carlo, we note that this approach for generating multiple
trial states is distinct, as discussed more in Appendix .

2.3. Simulated Properties—Energy and Free Energy. For
the bulk of our studies of GPU algorithms, we shall study the
simple property of average energy of methane adsorbed in
the zeolite MFI, as energies must be calculated at each step in
the Monte Carlo simulation. Average energy is not typically a
difficult quantity to converge; however, it yields a well-defined
benchmark for gauging the speedup of our various GPU algo-
rithms and to study the optimization of these algorithms on the
GPU architecture.

Once we have optimized the various algorithms, we then apply
the lessons gleaned to a highly relevant property, the free energy
profile of methane diffusing through the zeolite LTA. In zeolites,
these free-energy barriers are relevant for characterizing the
diffusive behavior of adsorbates within the zeolite framework.'®
The zeolite LTA poses a straightforward pore topology of a simple
cubic arrangement of pores separated by windows. Thus, in any
axial direction, adsorbed methane molecules encounter free
energetic barriers at the windows connecting the cages. This
barrier is substantial yet still thermally accessible. As such, the
calculation of the free-energy profile along the reaction coordi-
nate z is simply calculating the histogram of probabilities along
z, P(2):

F(z) = —kgT In P(z) (4)

Certainly, this examination is relevant because F(z) is a mean-
ingful and computationally intensive quantity to calculate. But
this final comparison is also important to conduct because waste-
recycling Monte Carlo is most fruitfully employed on CPUs for
free energy calculations,"®'”'® so we must also allow for this
possibility on the GPU as well.

3. COMPUTATIONAL SETUP

In this section, we first outline the various strategies we
employ for mapping these zeolite simulations onto the GPU.
These strategies as well as the implementation, optimization, and
testing of GPU algorithms for these strategies are the main
contributions of this paper, as detailed in subsequent sections.
We then describe in section 3.2 one constant in all of our studied
GPU implementations—the construction of a framework energy
grid to represent the interactions between methane molecules
and the zeolite framework atoms. This grid in general yields a
substantial speedup in the simulation of zeolites, which are rigid
to a good approximation; thus careful implementation on the
GPU is important.

All of the simulations for this work were conducted using the
Dirac cluster at the National Energy Research Scientific Comput-
ing Center (NERSC). The CURAND library was employed for
generating the necessary random numbers on the GPU.'
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(a) CUDA thread per methane—MFI

(b) CUDA block per methane—MFI

Figure 2. Mapping of methane—MFI systems to CUDA hardware
resources. In Tesla C2050 GPU cards, there are 14 streaming multi-
processors (SM) shown as green blocks and at maximum eight resident
blocks (Bl) per SM (shown as red boxes). Each thread within a block is
indicated by a black arrow. (a) The CUDA thread per methane—MFI
implementation mapping is used in the embarrassingly parallel algo-
rithm (PMC). (b) The CUDA block per methane—MFI implementa-
tion mapping is used in the parallel Lennard-Jones algorithm (PLJ) and
the two multiproposal waste recycling algorithms (MUP and MDP). As
an example, we show the “location” of methane—MFI system 1 and
system 4 on hardware resources for each mapping.

Further hardware and compilation details may be found in
Appendix .

3.1. Strategies for Mapping Zeolite Simulations onto GPU.
Given that only a small subset of the entire structure needs to be
simulated, thousands of methane—MFI systems can simulta-
neously fit inside the GPU DRAM and multiple, independent
Monte Carlo simulations can be processed in parallel to improve
the statistical accuracy. We pursue two different ways to map the
individual methane—MFI system to the GPU hardware.

First, we choose a strategy where each CUDA thread executes
its own independent MC simulation (Figure 2a). Denoting the
CUDA block size as fiyeadsy @ single Monte Carlo simulation
contains Nyjocks X Mehreads independent methane—MFI systems.
Effectively, this algorithm can process fig, eads times more methane—
MEFI systems in one simulation compared to the next paralleliza-
tion scheme conducted on a per block basis. Despite this benefit,
this implementation includes overall longer computational wall
time and more DRAM usage that reduces the maximum number
of particles that can be simulated, and it also cannot utilize fast
GPU memory due to the large amount of resources used by a
single CUDA thread.

Therefore, we also choose an alternate parallelization strategy
where each CUDA thread block executes its own independent
MC simulation with threads from the same block contributing
to either waste recycling or parallel Lennard-Jones calculations
(Figure 2b). Nyjoes is used to represent the total number of
CUDA thread blocks launched and, in this context, refers to the
total number of independent methane—MFI systems processed
in a single simulation. Communications between different CUDA
thread blocks is unnecessary until the end of the simulation when
energy values are collected from each of the blocks to obtain an
ensemble average.

3.2. Construction of the Framework Energy Grid. In order
to save computation time, explicit Lennard-Jones pair potential
calculation between the methane and the framework molecules is
avoided. Instead, we construct a three-dimensional rectangular

grid superimposed on top of the entire simulation box, where
each of the points represents the Lennard-Jones pair potential
values between a single methane molecule and the entire mol-
ecular framework. All of the energy grid point values are com-
puted just once before the start of the Monte Carlo simulation
and subsequently used during the Monte Carlo simulation as
a lookup table. By utilizing thousands of lightweight threads
available in the GPU architecture, the energy grid point values
can be computed in parallel inside the GPU using a simple
domain decomposition method in which each CUDA thread is
responsible for computing a single grid point value. To improve
accuracy within this approximation, it is better to generate as
many points as possible while working within the memory
available in the GPU DRAM. With an energy grid of mesh size
512 X 512 x 256 along the x, y, and z directions, results within
0.05% of the energy values from utilizing direct Lennard-Jones
calculations are obtained. Therefore, we use the corresponding
values of Ox = 0.0784 A, 9y = 0.0778 A, and 0z = 0.105 A as our
mesh size for all of the simulations.

The memory needed to store the energy grid values is too large
(roughly S00 MB for 64-bit doubles) to fit into any of the fast
GPU memory, and hence the energy grid array is put into the
slow, global GPU DRAM. Given that the methane molecules are
free to occupy spatial coordinates not directly located on the
energy grid points, linear interpolation functions from eight
nearest neighboring energy grid point values are used to approx-
imate the exact Lennard-Jones pair potential value at a given
particle position at each Monte Carlo step. Because these eight
neighboring points cannot be stored contiguously inside the
GPU memory for all of the grid points, multiple memory
transactions are needed to compute the contributions of the
framework molecules from a single particle position. Although
these memory transactions are expensive, there still exists con-
siderable speedup utilizing the energy grid as opposed to
explicitly computing the Lennard-Jones pair potential terms
from each of the 1536 framework molecules for all Monte Carlo
steps. Moreover, as the number of molecules increases, the
proportional wall time spent in the energy grid read access
becomes smaller and becomes less of a concern. For the GPU
architecture in general, frequent data movement from the GPU
DRAM causes the code to become memory bound (which
amounts to 144 GB/s in the Tesla C2050 cards used in our work).

Finally, the interaction between the framework molecules (i.e.,
oxygen—oxygen) is ignored, as oxygen is assumed to be sta-
tionary throughout the simulation.

4. GPU MONTE CARLO ALGORITHMS

In this section, we describe in detail the four GPU Monte
Carlo algorithms implemented in our work. In all of the methods,
one initial methane—MFI system is generated by assigning ran-
domized positions to methane molecules inside the simulation
box. This configuration is equilibrated via a serialized Markov-
Chain Monte Carlo (MCMC) method using a single core CPU.
In this MCMC simulation, a small (that is, small compared to the
dimensions of the simulation box), random translation step size
is used to propose a particle movement to a new position, and
this proposal is either accepted or rejected according to the
Metropolis probability.”® The step size in particle displacement is
chosen such that approximately 50% of the translation proposals
are accepted according to the Metropolis probability. In this
work, we do not focus on accelerating the equilibration phase of

3211 dx.doi.org/10.1021/ct200474j |J. Chem. Theory Comput. 2011, 7, 3208-3222


http://pubs.acs.org/action/showImage?doi=10.1021/ct200474j&iName=master.img-001.jpg&w=240&h=145

Journal of Chemical Theory and Computation

the Monte Carlo, and therefore the CPU rather than the GPU is
utilized to equilibrate the system. After equilibration, the particle
coordinates are duplicated Nyjocs times (in the embarrassingly
parallel algorithm, Nyjocs X fihreads) in the CPU, and the data are
transferred to the GPU DRAM. In general, we want Ny, to be
a number that is an integer multiple of the total number of
streaming multiprocessors found in the GPU (e.g., 14 in the case
of Tesla C2050) to balance the workload among the multi-
processors. Inside the GPU, these systems need to be decorre-
lated in order to remove any correlation that might persist
between particles from different systems, which can adversely
affect the MC results. The algorithm used for decorrelation is the
same as that employed in the accumulation phase. This algorithm
is unique to each method, and all are detailed next.

4.1.Embarrassingly Parallel Monte Carlo (PMC). In contrast
to the following three methods, in the embarrassingly parallel
Monte Carlo (PMC) algorithm, each CUDA thread (instead of
each CUDA block) is mapped to one methane—MFI system, and
all of the threads conduct their own independent monoproposal
MCMC simulation. Within this implementation, since each
CUDA thread needs to have its own unique data of particle
positions as well as other hardware resources, the fast memory
available from the GPU hardware is insufficient, and all of the
data are kept inside the global DRAM. We limit global DRAM
transactions via memory coalescing and utilize the following
indexing scheme to store particle coordinates inside our arrays.
For a given CUDA thread j, the coordinates of the particles
are stored inside an array in indices j, j + freadsNblocks j +
2MhreadsNblocksy €tc. such that a single memory transaction exe-
cuted by a warp (corresponding to 32 independent methane—
MFI system) can load a contiguous block of 32 64-bit data related
to one particle index in order to maximize memory throughput.
Within this implementation, all of the CUDA threads (and there-
fore, each independent methane—MFI system) choose the same
particle index number for displacement in a Monte Carlo step to
avoid warp divergence. Once the systems are completely decorre-
lated from one another, choosing the same index does not cause a
problem since particles that possess the same index number from
different systems are unrelated to one another.

4.2. Parallel Lennard-Jones (PLJ). For most system sizes, the
bottleneck routine in our Monte Carlo simulation is the kernel
that computes the Lennard-Jones pair potential. Accordingly, we
devise a GPU algorithm that parallelizes this calculation in the
monoproposal MCMC algorithm. The change in total energy for
moving particle k from ry o4 to 1} e, While holding the remaining
particles fixed can be calculated in ((Ny,,) time via

Niot Niot

AEtot - 2 U(rjk,new) - Z U(rjk, old)
j#k 7k
+ Egrid(rk,new) - Egrid(rk,old) (5)

where Ny, is the total number of particles in the system and
U(rc) is the Lennard-Jones pair potential between particles j and
k as defined in eq 1. Egrid(rk) represents the total summation of
pair potentials between particle k and all of the framework
molecules as computed by an energy grid. The computation of
these energies requires only linear interpolation from given grid
points, as described in the previous section. The most expensive
computation is the calculation of all L] pair energies, and for a
given Lennard-Jones pair-potential calculation between two
particles, the most expensive operation is the floating-point

division operator. In order to reduce the cost, only one division
operator is executed per pair potential, and the intermediate term
is reused to avoid the second division operation in eq 1.

In the PLJ algorithm, the CUDA threads within the same block
divide up the computation work of the two summation terms
found in eq S. Energy subtotals from each of the CUDA threads
are combined at each MC step using a reduction kernel to obtain
the total Lennard-Jones potential value. We utilize a reduction
kernel similar to one found in the CUDA SDK example.”!

4.3. Waste-Recycling with Multiple Uniform Proposals
(MUP). The previous two implementations are based on the
conventional Monte Carlo algorithm and in which we use the
GPU to speed up the bottleneck routines in the computation. In this
section, we develop an alternative approach in which we implement
the idea of using information of rejected moves in Monte Carlo
simulations, using the GPU to generate multiple trial states and
employing a multiproposal version of the waste recycling Monte
Carlo described in section 2.2. In practice, the waste recycling
algorithm can be easily mapped into conventional CPU architec-
tures, but in the case of single-core architectures, the parallelism
would be lost as each of the multiple proposed trial states in the
Monte Carlo algorithm would need to be processed sequentially.
On multicore CPU architectures, the different trial states can be
processed in parallel, but the performance gain will not be as great
compared to the execution via GPU architecture due to the larger
overhead cost of generating and combining multiple CPU threads.

In our CUDA waste recycling Monte Carlo code, we first
employ a variant of the waste-recycling algorithm outlined in the
paper by Frenkel," which we shall refer to as multiple uniform
proposals (MUP). In this paper, he describes a symmetric
Boltzmann-like multiproposal scheme where the original state
oisincluded on equal footing with all of the states in the set {n} of
trial states, and the final state is chosen from the set {o,{n}}.

Our CUDA waste recycling algorithm based on that of
Frenkel" is as follows:

1 Generate an initial state o, and set to zero the accumulator

Sa for estimating the average of the observable A.

2 Generate a set of trial states, {n}, by randomly choosing one
methane molecule and randomly generating a set of new
positions for this molecule uniformly throughout the entire
simulation box. The total number of trial states including
the old state o is represented by Ni,;qp.

3 Compute the Boltzmann weights w; = exp(—pE,) for all i €
{o{n}}.

4 Update the accumulator S, according to the following equation:

Z wiA;

i

2w
i

SA_’SA+

where again i € {o,{n}}.

S Choose a final state f € {0,{n} } with an acceptance probability

-
pulf) = 50

6 Repeat steps 2—S starting from the chosen state f. Continue
for a total of M Monte Carlo steps.
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7 Estimate the average of A as (A). = Sa/M.

For this work, the accumulator term S, defined in step 1 either
refers to the total energy of the system or the occupation
probability of a given volume slice. These individual probabilities
for volume slices that span the simulation box are then combined
in the end to yield P(z) for free energy calculations.

For step 2, the total number of trial states, N0y, is set to be a
multiple of 32 because the NVIDIA GPU hardware schedules
and executes threads in groups of 32 called a warp. For any other
number, some threads will remain idle while waiting for other
threads within the same warp to finish work, resulting in warp
divergence and performance degradation. We note that step 2 is
the point of main difference with our alternative multiproposal
waste recycling algorithm described in the following subsection.

The total energy of proposal i, E; is used to determine the
associated Boltzmann weight, w;, in step 3 and is calculated from
eq S. All N, threads share the same value for the second
summation term in eq S, Zgg%U(rjklold), and accordingly this
term needs to be only calculated once for all of the multiple
proposals. In our implementation, thread 0 calculates this term.
This offers an advantage over a monoproposal Lennard-Jones
algorithm in which the term needs to be calculated for each new
displacement, and its value cannot be reused for additional
displacements.

In step 4, the accumulator term Sy is updated at each Monte
Carlo step by taking the summation of the energy contributions
from N, CUDA threads. Two separate reduction operations
need to be performed to compute ¥,w;A; and ¥w;, and we utilize
an algorithm similar to one found in the reduction for parallel
Lennard-Jones calculations. It is noteworthy to point out that
array elements with nonzero indices contain partial summation
results that are later used in step S to expedite calculation in its
routine. As one example, w[1] = ¥NB™P/24y[2i + 1]. Because
multiple accesses to the same memory address occur as many as
log Nyop times in the reduction algorithm, all of the array
elements w;A; and w; are fetched once from the global memory
and moved into the fast, shared memory in order to reduce global
memory bandwidth. Using shared memory in the reduction
kernel is more important in pre-Fermi cards, which does not
have the L1 cache memory. In the Fermi GPUs, the array can be
kept inside the global memory and moved into the 16/48 kB L1
cache, which is the same hardware as the shared memory,
avoiding performance degradation.

In step 5, the WRMC algorithm updates the particle co-
ordinates by selecting a final state among all proposed trial
states with probability proportional to its Boltzmann weight.
This acceptance probability is a multiproposal extension of the
symmetric Barker acceptance ratio defined in section 2.2."'°
For thread 0, the final state is set to be equal to the initial state,
thereby making it possible for the system to remain unchanged
after a WRMC step. Using CUDA, step S can be conducted in
log Nyop steps by reusing intermediate results from the step 4
reduction kernel in a following way. At the end of the reduction
kernel, the array element w[0] contains the sum of all of the
Boltzmann weights S = yNeor 1y whereas other array elements
have partial sums that are less than S. In step S, all of the
elements in this array are divided by S for normalization
purposes, such that w[0] = 1 and 0 < w[i] < 1 for all i # 0.
Next, arandom number R uniformly distributed from 0 and 1 is
generated per system using the curand_uniform_double func-
tion from the device API. Depending on R, the final state is

chosen according to the algorithm outlined in the CUDA code
below:

Listing 1. Step S CUDA Code

1 //R - random number uniformly choosen
from [0,1]

2 //w - array that contains normalized Boltzmann weights
3 //step_num - index of trial state chosen for next MC
move

4 //N - total number of independent WRMC proposals

S

6 int index = 1;

7 int N = blockDim x;

8

9 for(inti=2;i < Nj; i*=2)

10 {

11 if (R < w[index])

12 index +=i;

13 else

14 {

15 R -= w[index];

16 index += 0.5%

17 }

18}

19

20 //last step

21if (R = w[step_num])

22 step_num -= 0.5*N;

The system updates to a new state, and the waste recycling
Monte Carlo step is repeated M steps (step 6). Finally, the
average quantity A for the system is obtained after M moves
according to step 7.

4.4. Waste-Recycling with Multiple Displacement Propo-
sals (MDP). The waste-recycling algorithm presented in the
preceding subsection relies on nonlocal moves. Such a scheme
works well if the rejected configurations have a reasonable
contribution. In dense systems, however, the probability that a
nonlocal move gives a significant contribution is extremely low.
Therefore, we expect that local moves constructed on the basis of
displacements from the old state, as done for our PMC, PLJ, and
benchmark serial CPU algorithms, will be much more fruitful.
This, however, requires a modification of the original algorithm
in order to construct a waste-recycling algorithm based on
multiple particle displacements from the old state. As will be
demonstrated, this method is more effective at exploring im-
portant regions of phase space at high particle densities.

The only needed modification of the previous algorithm lies in
constructing the set of proposals P = {o,{n}} in step 2, where
small displacement steps are used to generate the multiple trial
states in our algorithm. In generating this set P of positions based
on displacements, it is crucial that the set is equally likely to be
generated by any trial position in the set. Provided that the
generation probability pee,(P]i) of set P is equal for any point i € P,
the simple Barker-like acceptance probability employed in sec-
tion 4.3 may still be used.

The crux of generating such a set of positons P lies in
constructing two separate random walks starting from the chosen
particle k in state o. The total length of the two random walks is
Nprop — 1 displacements, leading to a total of Np,o, — 1 trial
states. However, by choosing the position of the generating point
from state o uniformly within the combined length of the two
random walks, any trial position within the random walk is

3213 dx.doi.org/10.1021/ct200474j |J. Chem. Theory Comput. 2011, 7, 3208-3222



Journal of Chemical Theory and Computation

equally likely to have generated the set of positions P. Therefore
Pen(P|i) is equal for all trial states in the set, yielding the simple
acceptance probability given in section 4.3 by detailed balance.

In detail, each random walk is initiated from the position of
particle k in state 0. The two walks are of length N, — ! — 1 and
I, with I representing a random integer from 0 to N, — 1. Each
point in each random walk is based on a uniformly generated
random displacement from the previous position in the random
walk. We make sure that each of these random displacements
abide by the periodic boundary condition given that they can
fall outside of our simulation volume. We emphasize the exact
algorithm we use for trial state generation by displacements
because several seemingly reasonable alternatives for generating
multiple proposals either result in incorrect sampling of states or
a prohibitively expensive use of waste, as is discussed in Appendix

4.5. Optimal Estimation for Waste Recycling. The work of
Delmas and Jourdain'® suggests an optimal reweighting of waste
recycling averages and traditional MC averages when employing
symmetric acceptance ratios such as those employed in sections
4.3 and 4.4. To our knowledge, the work presented here is the
first implementation of this optimal estimator in a multiproposal
framework, though this estimator has been explored in detail in a
monoproposal setting.22

For a quantity A, detailed mathematical analysis by Delmas and
Jourdain demonstrated that the optimal estimation of its average,
when using a Barker-like acceptance ratio, may be written as

(Aope = (1= b*)Ac + b Awruc (6)

where optimal estimation is in the sense of minimal standard
deviation. The coefficient b* itself depends on the variance of the
property as well as the correlation in a property across steps in the
Markov chain as

(42 — Ay’

p* — T
2 (A1 —Am)2>

(7)

with the A,, and A, in the denominator indicating quantity values at
successive states in the Markov chain."** This estimator of Delmas
and Jourdain is still valid when using Metropolis-like acceptance ratios
such as the one described for configurational-bias MC in Appendix ;
however, in such cases, the estimator is not optimal.

Since each quantity in the above equation for b* is a pure
ensemble average, these averages may be evaluated with equal
validity as waste-recycling estimates and as traditional Monte
Carlo averages. Thus, when waste-recycling provides a benefit,
which we expect for this multiproposal scenario, a waste-recycling
estimation of b* makes sense. In such a case, the coefficient for the
optimal estimator b* itself may be estimated as

b¥wrmc ~
2
Ly - (L5 % petia
T paccl i o paccl i
Mm:lie{o,{n}} Mm:ue{o,{n}}
LS Y pela-a)
M= e fo o}

(8)

Note that the denominator in the above equation no longer
references the mth and the (m + 1)th states. All quantities A,
are those of the proposed moves from state o in a given step m.

Thus, rather than only considering the final accepted state used in
the subsequent step m + 1, we instead include information on all
proposed paths out of state o at step m in both the numerator and
the denominator. All summands in the numerator and denomi-
nator implicitly depend on the current step m in the Markov
chain; this dependence is omitted for simplification of notation.

This optimal estimator may be employed for both waste
recycling algorithms studied in this paper, MUP and MDP.
However, as the results based on multiple displacment proposals
(MDP) are much more promising across a range of loadings, we
restrict our application of the optimal estimator to simply the
MDP algorithm. In these instances, we shall annotate the results
as MDP-DJ, for Delmas and Jourdain.

5. RESULTS

The details of the GPU Monte Carlo simulation results are
given in this section. The statistical accuracies for different GPU
algorithms are compared for various numbers of methane
molecules in both unoptimized and optimized CUDA config-
urations. In the unoptimized CUDA configuration, the number
of blocks per SM is set to be 1, and the number of threads per
block is set to be 32, resulting in suboptimal work allocation to
the GPU threads. In the optimized CUDA configuration, both
the number of blocks and the number of threads per block are
increased to maximize occupancy in the SM and subsequently
performance. Despite its inefficiency, the unoptimized CUDA
configuration serves as a good basic starting configuration that
allows us to easily test the correctness of the code and to compare
the different GPU parallelization methods. Within the optimized
CUDA configuration, we compare the performance difference
for different distributions of CUDA blocks/threads for the waste
recycling Monte Carlo algorithm. We analyze the effect of in-
cluding the optimal estimator in the statistical accuracy of these
WRMC simulations. As a performance comparison, we show
speedup numbers of our GPU algorithms compared to a single
core CPU code as evidence of performance benefits of using
CUDA. Finally, we investigate the performance utility of the waste
recycling Monte Carlo algorithm in computing the free-energy
profile of methane gas molecules inside a zeolite framework.

5.1. Initial Unoptimized Assessment. Figure 3a displays the
single iteration wall time for the embarrassingly parallel Monte
Carlo (PMC), monoproposal parallel Lennard-Jones calculation
(PLJ), multiple-uniform-proposals waste recycling Monte Carlo
(MUP), and multiple-displacement-proposals waste recycling
Monte Carlo (MDP), in that order from left to right for N =
32,48, 64, 80,96, 112, and 128 methane molecules. The iteration
time for the embarrassingly parallel Monte Carlo method is the
longest for all system sizes, which is reasonable given that the
number of floating point operations is the largest here since
each CUDA thread conducts its own Monte Carlo simulation.
The iteration time for the parallel Lennard-Jones calculation is
the shortest, as nyeaqs threads share the same methane—MFI
system, in contrast to PLJ, and as only one proposal move per
CUDA block is required at each iteration as opposed to multiple
trial moves per iteration for the two waste recycling methods. In
the limiting case of a very large system where Lennard-Jones
calculation completely dominates total wall time, the number of
floating point operations in the two waste recycling methods
would be roughly nyreqds times larger than the number found in
the parallel Lennard-Jones method for the same number of
accumulation steps. However, this workload can be reduced by
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Figure 3. Comparison of the various parallel algorithms for different numbers of methane molecules. (a) Single MC iteration time (in seconds on the
left axis) as a function of the number of methane molecules (from left to right: PMC, PLJ, MUP, MDP). (b) Comparison of the standard deviations in the
energy (in units of Kelvin) as a function of the number of methane molecules for the various parallelization strategies. The number of accumulation steps
is varied to equate the total wall times of the simulations in all four methods.

approximately half in the waste recycling methods as fgeqds
independent proposals all share the same old system energy value
at the start of each Monte Carlo step, and thus this value needs to
be just calculated once for all of the multiple proposals. Overall,
the wall time for the parallel Lennard-Jones method in the
limiting case would be approximately 0.5/ eqds = 16 times faster
than the waste recycling methods with the WRMC algorithms
collecting 32X more energy samples during the simulation.
Analyzing the wall times for the two waste recycling methods,
we observe that the displacement WRMC has about a 10 us
longer iteration time than the uniformly sampled WRMC for all
system sizes due to the additional overhead from generating two
separate random walks in the displacement WRMC method.

As an initial comparison of the effectiveness of each technique
in variance reduction, we run simulations with comparable total
wall times as follows. The total number of equilibration and
decorrelation steps is set to be 200000 each while the baseline
accumulation step is set to be 1 million for the embarrassingly
parallel Monte Carlo method. The accumulation steps for other
methods are adjusted with respect to this baseline number such
that the total wall time spent inside the GPU for all of the
methods remains equal. The number of accumulation steps for
parallel Lennard-Jones is set to be 9.5, 11.0, 14.0, 16.7, 16.4, and
17.8 million; the number for uniformly sampled WRMC is set to
be2.1,2.2,2.3,2.3,2.3,2.3, and 2.3 million steps, and the number
for displacement WRMC is set to be 1.8, 1.9, 2.0, 2.0, 2.0, 2.1, and
2.1 million steps for N = 32, 48, 64, 80, 96, 112, and 128 methane
molecules. The total number of CUDA blocks, Nyocks is equal to
14 with one block occupying each of the streaming multi-
processors. The CUDA block size #iy,eaqs is set to 32, which
leads to a low occupancy number (i.e., 32/1536 = 0.021, with
1536 being the maximum number of resident threads per multi-
processor in Tesla C2050) and underutilization of the Fermi
GPU hardware. Because the main focus here is to investigate the
general behavior trends for each of the different CUDA paralle-
lization methods at varying particle densities, we initially explore
a simple, reduced layout of thread blocks and sizes and forego
optimization analysis until later.

In Figure 3b, we plot on a log—linear scale the standard
deviation of total energy for 40 independent Monte Carlo simu-
lation runs as a function of the number of methane molecules for
the four methods. Overall, the embarrassingly parallel Monte
Carlo (PMC) algorithm provides the best statistical accuracy for
all system sizes, as the benefit of processing fireqds times more

independent systems than other methods outweighs the cost of
the longer single iteration time. In the parallel Lennard-Jones
(PLJ) method, the proportional wall time spent in routines other
than the Lennard-Jones kernel remains large compared to other
methods (due to short single iteration wall time), and this
overhead causes performance degradation that is evident espe-
cially in the low-density regime where the method fairs the worst.
The multiple-uniform-proposals (MUP) WRMC excels for small
system sizes/low densities where the likelihood of sampling non-
negligible Boltzmann weights (i.e., low energy configurations) in
the proposed trial states remains high. However, at large system
sizes/high densities, the method fairs the worst, as most of the
randomly generated trial states result in high energy configura-
tions that add negligible contribution to the Monte Carlo
statistics. This problem is remedied in the multiple-displace-
ment-proposals (MDP) WRMC method where the random
walks are conducted in small step sizes and lead to relatively
lower energy configurations for each of the proposed trial states.
From Figure 3b, we observe that the standard deviation values
from the MDP waste-recycling algorithm are comparable to the
ones from the PL] method for all system sizes.

5.2. Exploration of MDP Parameters. Next, we further
analyze the displacement WRMC method (MDP) and vary the
maximum displacement step size, diay as well as the total length
of the random walks (i.e., fyreaqsy Which is the CUDA thread
block size) in our MC simulations to determine the optimal
parameter settings for the WRMC simulation. Because our
interest lies mostly in code optimization for high density systems,
we restrict our analysis to the displacement WRMC method for
128 methane molecules, which provides better statistical accu-
racy at high density compared to the multiple-uniform-proposals
WRMC. Figure 4 shows the plot of the standard deviation of the
total system energy for 40 independent MC simulations as a
function of d,,,, with 1 million accumulation steps for total length
of random walks #y,e0qs = 32, 64, 128, 256, and 512. In all of the
simulations, dy,. is the same value along all three spatial
directions, and g, c.ds is set to be a multiple of the warp size in
all cases to avoid warp divergence and for simplicity. The total
GPU wall time for different #y,;e,q are not set to be equal here
and accordingly, simulations with larger ng,e.qs have longer
single iteration times and are expected to provide greater
statistical accuracies. Given the GPU hardware limit on register
size per streaming multiprocessor (32 kB/SM), the maximum
number of threads that can occupy a multiprocessor is 512 in our
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Figure 4. Standard deviation of the average of energy as a function of
the maximum individual displacement step, dy,.,, for CUDA block size
ranging from 32 to 512 threads. The CUDA block size corresponds to
the total length of the two random walks in the multiple-displacement-
proposals (MDP) WRMC algorithm. The standard deviation values for
the multiple-uniform-proposals (MUP) WRMC are represented as
dashed lines with the same colors (corresponding to same CUDA block
size) as the displacement WRMC.

code, thus limiting the length of the random walks. In order to
conceive longer random walks, threads from multiple blocks
need to be assigned to process the same methane—MFI system,
which would effectively replace the one CUDA block per one
methane—MFI system mapping that is being currently utilized.
In such an implementation, threads from different CUDA blocks
would need to be synchronized at each MC step, which can only
be achieved through termination of the CUDA kernel given the
lack of universal barrier synchronizations in CUDA. Due to the
increased latency resulting from relaunching a CUDA kernel at
every MC iteration and the diminishing return in statistical
accuracy for large thread block sizes, we do not allow for multiple
CUDA blocks to process a single system and limit the maximum
length of the random walk at 512.

As can be seen from Figure 4, the statistical accuracy in our
simulations improves with larger numbers of #1y,eaqs as expected
since more threads contribute to waste recycling. For all values of
Mihreadsy @ small dp., (e.g, 0.15 A) leads to large standard
deviation values. While the trial state particle positions near the
original position will have reasonably high Boltzmann weights,
they are highly correlated with the original position and as such
do not add much new information. As d,,,, is increased for all
Nihreadsy the standard deviations begin to increase again. In this
case, while the proposals are more decorrelated from the original
position, they are far more likely to have a small Boltzmann
weight. As discussed below and in more detail in Appendix , we
may capture the scaling of these standard deviations with a simple
quantitative model, but regardless of the exact scaling, Figure 4
demonstrates that, in all cases presented here, the standard
deviation in WRMC using multiple displacement proposals
(MDP) substantially improves over multiple uniform proposals
(MUP). The displacement WRMC method becomes equivalent

to the uniform WRMC method at d,,,,, values equal to dimen-
sions of the simulation box, a distance which is substantially
larger than 1.65 A.

The basic scaling behaviors of the standard deviation as a
function of d,,, and ny,;,4s may be quite easily understood from
the probability of sampling different distances from the generat-
ing point. Three considerations are necessary reflecting the pur-
pose of displacement-based Monte Carlo simulation to gather
new relevant information by optimizing for sampling near the
particle’s current position, but not too near that position. (1)
Sampling regions too close to the original position of the particle
(r < Riyin) does not yield useful additional information, as these
positions are within the exclusion zone of the original particle.
(2) Sampling regions too far from the original position of the
particle (r > R.,,,,) also does not yield useful information, as these
more dispersed locations are less likely to be in the important
regions of phase space. (3) Sampling a local region in space with a
higher density of points is no longer useful beyond some density
Pecap- Disregarding the important effect of p.,, for the moment,
for a fixed number of particles, as the step size increases, initially
the number of points between R,;,, and R ,,,, increases, leading to
better sampling. Then, the number of points begins to decrease
again, leading to somewhat poorer sampling of the important
nearby region. For a fixed step size, as the number of proposals
increases, the number of samples within that window increases in
a nonlinear fashion, re-emphasizing why the standard deviation
decreases as fgreqds increases. The effect of p.,, becomes
particularly important for large values of nyy eqqs and small d,y,,,
as this combination can lead to a remarkably high number of
samples at given radii. Exclusion of point densities exceeding .o
is partially responsible for the comparably large standard devia-
tion at small d,,,, even for large fireads as seen in Figure 4.

A random walker model motivated by these very basic
considerations of which regions of space are important to sample
is developed in Appendix . Hypothetically, this model could allow
for the optimal choice of dy. and #1g,eaqs to minimize standard
deviation for computation time. However, detailed knowledge of
molecular organization in the nonuniform environment is re-
quired to yield an accurate model. As such, while we can deter-
mine an optimal choice of dyy,,, for these systems, in general this is
likely not accessible. Therefore, based on the results displayed in
Figure 4, we utilize dy.x = 0.65 A for the remainder of these
studies since that seems reasonably advantageous for all con-
sidered 1y e,as and does not rely on optimizing dy,y.

5.3. Optimal Estimator of Delmas and Jourdain. We also
examine the effect of the optimal estimator on standard devia-
tions. As shown in Figure S, for both 32 threads and 128 threads,
the linear combination of the traditional MC and WRMC results
via the factor b* yields a reduction in the standard deviation of the
energy. The estimation of b* itself does come at a small
computational cost; however, the benefits in standard deviation
decrease outweigh this computational cost. The optimal estima-
tor appears to have a more beneficial effect for simulations with
greater numbers of threads. This likely is a consequence of the
improved estimation of b* itself as more terms are included in the
waste-recycling average. Since the use of the optimal estimator
provides enhanced accuracy of prediction with minimal compu-
tational cost, all further results for multiproposal WRMC shall
employ the optimal estimator. The values of b* are shown in
Table 1.

5.4. Optimization of Thread Block Configuration. We now
begin to optimize our CUDA configuration. In the previous
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Figure S. Standard deviation of the average energy as a function of the
number of particles for #ig,e,qs = 32 and 128 for the multiple-displacement-
proposals algorithm with (MDP-DJ) and without (MDP) the optimal
estimator for 1 million accumulation steps.

Table 1. Values of b* for MDP-DJ, Which Are Found Taking
the Averages of (E), (E*), and {(E,,,; — E,,)”) from the 14
CUDA Blocks, Which Processes Independent MFI
Frameworks

number of particles (Niq;)

Mthreads 32 64 96 128
32 66.74 136.20 224.92 400.40
128 43.14 89.93 162.07 321.72

displacement WRMC simulation results, the total number of
CUDA blocks is fixed at 14 with one streaming multiprocessor
executing a single CUDA block. This mapping prevents the
GPU hardware from scheduling warps from different thread
blocks and leads to hardware underutilization, which is especially
damaging for small y,eaqs at low occupancy. In order to remedy
this situation and to determine the optimal block size/number,
we increase the number of CUDA blocks and run simulations
with different combinations of CUDA block size (denoted as f1geads)
and the number of CUDA blocks per multiprocessor (denoted
as fplocks)- The single iteration wall time numbers for CUDA
thread configurations (Hgreads Mblocks) = (32, 16), (64, 8), (128, 4),
(256,2),and (512, 1) are plotted in Figure 6 for Ny, = 32, 64, 96,
and 128 methane molecules. In all of the simulations, njces X
ehreads = 512, and the total number of CUDA threads is fixed at
512 x 14 = 7168. The total number of independent methane—
MEFI system is 1410 cks-

From Figure 6, it can be seen that the single iteration time
decreases from the configuration (32, 16) to (64, 8) for all Ny,
Because the maximum resident number of thread blocks per
multiprocessor is limited to eight in Fermi Tesla C2050 cards,
only eight out of the 16 npjoqs can concurrently occupy a
streaming multiprocessor in (32, 16), resulting in an occupancy
number of only 256/1536 = 0.166 as opposed to 512/1536 =
0.333 for other configurations, which all have eight or less #pjocks-
The GPU hardware can be more fully utilized in configuration
settings with a higher occupancy number, and subsequently
we observe the wall time reduction from (32, 16) to (64, 8).
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Figure 6. Iteration time as a function of CUDA block size and number
of blocks per streaming multiprocessor for 32, 64, 96, and 128 particles
(from left to right, respectively) using the MDP-D]J algorithm. The total
number of CUDA blocks is 14#1pocxs-

For larger fyyeads the wall time increases from (64, 8) as the
proportional time spent in the kernel that generates the length
Nthreads Tandom walks becomes larger. Because threads having
different nyjoqs generate the random walks in parallel in our
implementation, only the value of y,eaqs largely determines the
kernel wall time. Overall, these two factors work together to
make the configuration (Mreadss Mblocks) = (64, 8) possess the
shortest wall time for all N,,.

It is important to keep in mind that we cannot easily determine
the optimal block/thread size by comparing just the iteration
wall times since each configuration possesses different values of
Nhreads and provides varying statistical accuracy. In order to
meaningfully evaluate the best (Mgyeadss Mblocks) configurations,
we follow the same strategy used to derive results in Figure 3b
and set the accumulation steps for (32, 16) to be a baseline
number of 1 million and adjust the number of steps in other
configurations to equate the total wall time spent in the GPU for
all (Myhreads) Mblocks)- Again, 40 independent displacement WRMC
simulation runs that include the optimal estimator are con-
ducted, and the average energy and standard deviation value
are tabulated in Table 2 (the values for #p),qs are the same ones
used in Figure 6 and omitted in the labels). For comparison,
we include simulation results from parallel Lennard-Jones and
embarrassingly parallel MC methods with equal wall time for all
Niov and all of the results are plotted in Figure 7 to illustrate the
behavior. In the parallel Lennard-Jones method, the (32, 16)
configuration was utilized for all Ny, as this results in minimum
single iteration wall time. In the embarrassingly parallel MC
method, we used the (64, 8) configuration, which also provided
the minimum single iteration wall time. For all N, the lowest
standard deviation values among the displacement WRMC
methods are observed for the (32, 16) and the (64, 8) config-
urations, as the performance cost of reducing the number of
independent ensembles outweighs the benefit of increasing the
number of WRMC proposal trial states for #1y,eqqs > 64. Overall,
similar to results found from the nonoptimized configurations in
Figure 3b, the overall most accurate results were found from the
embarrassingly parallel MC algorithm.

5.5. Comparison of GPU to CPU Timing. We also compare
the efficiency of the GPU methods to that of a single core CPU
monoproposal MCMC method. The algorithm for CPU MCMC
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Table 2. Average Energy and Standard Deviation Values for 32, 64, 96, and 128 Particles for Different ny,,,q45 in Units of Kelvin for

the MDP-DJ Algorithm

number of particles (Nio)

Mthreads 32 64 96 128
32 —68354.59 + 1.39 —138027.62 + 2.97 —209278.78 & 3.24 —281343.57 £ 7.63
64 —68353.49 £ 1.27 —138027.38 & 2.56 —209278.40 £ 3.21 —281340.17 & 7.58
128 —68354.19 & 1.67 —138027.66 & 2.27 —209280.23 + 3.73 —281340.30 & 9.55
256 —68355.18 £ 1.97 —138028.18 & 3.50 —209278.08 + 5.77 —281343.87 + 10.42
S12 —68352.43 + 3.32 —138028.45 &+ 4.84 —209277.23 £ 7.04 —281344.35+ 13.05
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Figure 7. Standard deviation in energy for the multiple-displacement-
proposals (MDP-DJ) WRMC results from Table 2 as well as parallel
Lennard-Jones (PLJ) and embarrassingly parallel simulations (PMC).
The block sizes of 32 and 64 (i.e., fypreads = 32 and 64) provide the lowest
standard deviation for the MDP-D]J algorithm.

is similar to the one used in the parallel Lennard-Jones method
except for the serial processing of the pair-potential calculation.
The CPU MCMC source code is compiled using an Intel 11.1
compiler, which provides faster CPU single iteration time com-
pared to gcc 4.4.2 for small system sizes. We define speedup as
the ratio between the CPU and the GPU single iteration times
and plot the results in Figure 8. It is difficult to compare the single
iteration wall times with the WRMC algorithm and arrive at any
meaningful conclusion since the two methods collect samples
with uneven importance weights. Accordingly, we choose to
omit this comparison and concentrate on GPU results from the
parallel Lennard-Jones and the embarrassingly parallel methods.
Unlike previous simulations, we simulate relatively large system
sizes that provide unphysical high loading situations to better
assess the speedup behaviors. Accordingly, the energy results are
erroneous for large system sizes, which is acceptable in this
context since only the numerical speedup results are meaningful
and of interest here. As can be seen from Figure 8, the embarrass-
ingly parallel MC method has better performance over the
parallel Lennard-Jones method for all system sizes with a maxi-
mum speedup value of 61.75 at 2048 methane molecules. How-
ever, for even larger system size, we expect the two methods to
provide similar values of speedup as the overhead from routines
involved in tasks other than pair-potential calculation become

time. The maximum speedup of 61.75 is observed for 2048 methane
molecules.

negligible for the parallel Lennard-Jones method, which is the
cause of slower speedup in small systems. For particle loadings of
interest in the methane—MFI system, at 32, 64, and 128 particles,
there are respectively 9.47 (44.11), 14.93 (53.18), and 21.68
(56.90) speedups in the parallel Lennard-Jones (embarrassingly
parallel) method over the CPU results.

5.6. Application to Free Energy Calculation. Finally, we
consider a simulation scenario where waste recycling was shown
to be useful in the literature—the calculation of the free-energy
profile along a reaction coordinate. The forms of P(z) and SF(z)
shown in Figure 9 nicely illustrate the simple free-energy barrier
in the windows between two cages, with mild corrugation within
the cages due to the packing of those methane molecules occupy-
ing the cages.

In the calculation of these histograms P(z), the previous efforts
in this paper toward optimization on the GPU are portable, so we
determine P(z) simply using the GPU-optimized mappings.
A priori, we expect this to be a scenario where waste recycling
Monte Carlo could lead to faster convergence in the histogram
because the higher free-energy states within the window between
cages will be sampled by the Markov chain of states much less
frequently, yet some subset of the multiple proposals not accepted
likely probes this region of space. And indeed, our expectations
are bourne out. For simulations of 32 methane molecules in the
zeolite LTA for 10 million MC cycles, P(z) is calculated via
simple binning. In this instance, both paralle] Lennard-Jones
(PLJ, not shown) and waste-recycling with multiple displacement
proposals (MDP, Figure 9) give quite similar forms for P(z).
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Figure 9. Plots for P(z) vs z (blue) and SF(z) vs z (red, inset) for LTA
with 32 methane molecules (10 million Monte Carlo cycles using the
waste recycling with multiple displacement proposals (MDP) with
fthreads = 32 and Myjoas = 8). P(2) indicates the histogram of probabilities,
while SF(z) represents the free-energy (unitless) along the z direction of
the LTA (unit cell length =24.555 A). The free-energy barrier is graphically
represented by the bump near z = 0.5 x 24.555 A in the inset curve.
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Figure 10. Relative standard deviation as a function of position across
the LTA zeolite for PL] and MDP simulations with equal wall times.

To assess timing gains, we run simulations using both techniques
such that the total wall time is fixed (10 million MDP cycles and
51.2 million PLJ cycles). For the MDP simulations, we exclude
the optimal estimator of Delmas and Jourdain as the system size
(e.g,, 32 methane molecules) is sufficiently small that the over-
head required in obtaining relevant quantities would most likely
not decrease the standard deviation taking into account wall time.
Moreover, the main point here is to emphasize the performance
difference between the waste recycling method and other more
conventional parallel methods. We consider standard deviations
across a set of 20 MC simulations for each parallelization strategy.
In order to better quantify any computational gains, we consider
a single point in these normalized probability distributions,
P(z*). We choose z* to be the least probable location, with z*
thereby corresponding to the free energy maximum, and P(z*) is
a quanti?f important in determining diffusion rates through
zeolites.'” For the system of 32 methane molecules in LTA,
parallel L] yields 2.41 x 10~* + 4.04 x 10 °, while waste
recycling Monte Carlo with multéple displacement proposals
yields 2.44 x 10~* £ 1.13 x 10" °. In Figure 10, we show the
relative standard deviation (i.e., standard deviation divided by the
mean value) at all of the bins across a single dimension of the

LTA zeolite for the same sets of simulations. As can be seen, the
MDP outperforms PLJ across the entire set of bins. Thus, as
hypothesized, waste recycling Monte Carlo on a GPU is compu-
tationally advantageous, oversimply accelerating the Lennard-Jones
potential calculation when sampling rare events.

6. CONCLUSIONS

Waste recycling Monte Carlo has previously been proposed
as a way to leverage the “unused” rejected trial states in Monte
Carlo simulations. Two examples of scenarios where waste
recycling has proven particularly useful are (1) parallel tempering
where there exists a large amount of fallow data available for
immediate harvesting and (2) calculation of 1potentials of mean
force which rely on histogram collection.®'”"®

Here, we examine in detail the application of WRMC to the
calculation of the simple average of energy E in canonical Monte
Carlo simulations, where waste recycling is not particularly
beneficial for single trial moves. Such an approach has allowed
us to optimize the GPU implementation of several distinct
parallelization strategies. The strategies are (1) embarrassingly
parallel Monte Carlo (PMC), (2) parallel Lennard-Jones calcula-
tion (PLJ), (3) waste recycling based on multiple uniform
proposals (MUP), and (4) waste recycling based on multiple
displacement proposals (MDP). Our figure of merit in these
studies of (E) has been the uncertainty in this average for each
technique, with a fixed computational wall time.

Our analysis of various GPU-implementation optimizations
for calculating the average energy has found that the use of
parallel Monte Carlo simulations is the most computationally
efficient approach. Such a conclusion is not surprising because
the sampling of #1y,reaqs-fold more independent simulation sys-
tems than for PL] or WRMC leads to a greater reduction in
variance. However, simply by virtue of limited memory re-
sources, such an embarrassingly parallel approach to MC simula-
tion will not always be feasible.

Allocating one simulation to an entire thread block eases those
memory constraints while leading to fewer total simulations. We
examined two possible approaches for using the computational
resources within a thread block—parallelization of the Lennard-
Jones pair potential calculation and the evaluation and waste
recycling of multiple Monte Carlo proposals. Among these
techniques, PLJ is the most efficient computational approach
for evaluating the average energy, allowing for the fastest propa-
gation through phase space based on CPU wall time. In essence,
this again is simply because efficient propagation through phase
space via the PLJ algorithm dominates for variance reduction in
the average energy.

The effectiveness of the multiple-uniform-proposals WRMC
algorithm decreases with greater density of particles as the trial
states generated from the uniformly random distribution pro-
vide high energy states that make negligible contributions to the
statistics. Generating trial states based on displacements, as done
in the multiple-displacement-proposals WRMC algorithm, side-
steps this problem. With careful generation of displacement
trial states based on a random walk of displacements, very little
modification of the remainder of the WRMC algorithm is required.

When calculating simple MC averages such as (E), parallel
Monte Carlo simulations with one simulation per thread (PMC)
is the algorithm of choice, followed by parallelization of the
Lennard-Jones calculations (PL]) within a thread block. Neither
WRMC algorithm is as computationally efficient. However, as
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noted earlier, in a variety of scenarios related to determination of
histograms and sampling of rare events, WRMC can be advanta-
geous on the CPU even when it is not for other quantities.

In particular, the free energy profile of particles in the caged
zeolite structures, crucial for characterizing diftusive behavior, is
straightforwardly related to the density profile of methane
molecules in the zeolite LTA. Therefore, we also compare the
optimized version of each of these algorithms for determination
of the free-energy profile between adsorption cages within the
zeolite LTA, in order to assess if WRMC on the GPU is then
worthwhile. Indeed, WRMC with multiple displacement propo-
sals (MDP) is more computationally efficient than either PMC
or PLJ in conducting free energy calculations.

Beyond assessing various Monte Carlo algorithms for frame-
work-adsorbate systems, we have also examined the utility of the
optimal estimator of Delmas and Jourdain'® in a multiproposal
scenario for the first time. We find that this optimal estimator is
advantageous for energy calculations with relatively little com-
putational overhead and provides meaningful improvement in
the estimation of properties.

While our studies indicate that often multiproposal waste-
recycling algorithms are not computationally the ideal path for
employing GPU resources in MC simulations, waste recycling
can be beneficial over other parallelization strategies for sampling
rare events. Our findings suggest that the relative merits of
WRMC in a parallel GPU computing environment are compar-
able to those in a single CPU computing environment, with
waste-recycling Monte Carlo advantageous for sampling rare
events but less useful for straightforward MC averages. However,
the careful implementation of a multiproposal framework as
developed in this paper is necessary to even employ waste
recycling in the GPU environment. Furthermore, we are cur-
rently expanding the work on the other GPU implementations
(PMC and PLJ) in order to substantially accelerate calculation of
adsorption isotherms in zeolites, as this is necessary to compu-
tationally screen the millions of hypothetical zeolite structures.*

APPENDIX A. COMPILER AND PROCESSOR
DESCRIPTION

The NERSC cluster used, Dirag, is a testbed GPU cluster that
contains 44 Fermi Tesla C2050 GPUs, which come equipped
with 448 CUDA cores, 14 streaming multiprocessors (SMs), 3
GB of DRAM, and ECC memory. The card delivers peak single-
precision (double-precision) performance of 1.03 TFlops (515
GFlops) and 144 GB/s of peak memory bandwidth. The PCI
Express 2.0 with 16 lanes is used to transfer data back and forth
from the CPU to the GPU memory. The CPU node within Dirac
consists of two Intel 5530 2.4 GHz, quad core Nehalems with an
8 MB cache, 5.86 GT/s QP], and 24 GB DDR3-1066 Reg ECC
memory. The CUDA compiler driver NVCC along with gcc 4.4.2
with -O3 optimization flag is used for all of the GPU simulations,
whereas for CPU simulations, the Intel C++ Compiler 11.1 is
used. CUDA Toolkit 3.2 along with CUDA C runtime is used,
and the CURAND library is utilized to generate Fseudorandom
numbers based off of the XORWOW algorithm."” The random
numbers are generated directly inside the device kernel using the
device API, thereby bypassing the need to transfer the numbers
from the CPU to the GPU. Random generator state initialization
(curand_init()) and random number generation (curand()) are
divided into two separate kernels in order to maximize perfor-
mance. All of the results reported in this work use double-
precision (64-bit) floating point numbers.

APPENDIX B. INCORRECT OR INEFFICIENT MULTIPLE
DISPLACEMENT PROPOSALS WITH WASTE-
RECYCLING

In section 4.4, we described our chosen MDP algorithm with
an empbhasis placed on the generation of trial positions such that
we may use the simple symmetric multiproposal Barker-like
acceptance ratio. Here, we describe alternative routes that proved
either incorrect or inefficient.

Incorrect MDP Algorithms. A naive, and incorrect, modifica-
tion of the multiproposal waste recycling algorithm in order to
generate multiple displacement proposals would involve gener-
ating the proposed particle positions all as single uniform
displacements from the original position of particle k. Such an
approach yields incorrect results. This stems from the fact that
not all points within the set P = {o0,{n}} are accessible to each
other via this trial-state generation algorithm. Instead, generating
{n} based on drawing displacements from a random Gaussian
distribution removes this formal accessibility barrier since there
is always some finite possibility of any point in A generating
the remaining points. However, this set P still has inherent
bias towards the state o as the generating point. Delmas and
Jourdain'® define a multiproposal acceptance ratio accounting
for the a priori probabilities of trial generation based on the
associated Gaussian probability density that corrects this state
generation bias. However, for the range of numbers of proposals
explored in this paper, calculated properties still exhibited a
dependence on the number of proposals.

Inefficient MDP with Configurational Bias. The crux of our
employed multiproposal algorithms lies in constructing a set of
proposals that are equally likely to have proposed that set, and
this results in a simply symmetric Boltzmann acceptance ratio.
However, a more traditional approach to multiproposal Monte
Carlo would be the implementation of configurational bias
Monte Carlo (CBMC).” A standard CBMC algorithm for multi-
ple proposals might propose a set of trial states {n} based on
displacements from the old state 0. A proposed state is then
chosen solely from the set of trial states {n} based on their
relative Boltzmann weights. Once a proposed state is chosen, it is
either accepted or rejected on the basis of both the sum of the
Boltzmann weights from the set of trial states {n} and a sum of
Boltzmann weights due to a hypothetical set of trial states {0’}
which are generated by displacements from the proposed
state. This generation of forward and backward sets of trial states
is required in order to fulfill the condition of superdetailed
balance.”

Simulating with multiproposal configurational bias yields
correct results; however, optimal implementation of the waste
recycling approach would require the accumulation of the following
summation:

A= 4 %}%{Ai acc(o — i) + A,[1 —acc(o —~ )]} (9)

where w; is defined again as exp(—fE;) and W is defined as

w= Y w (10)
ie{n}

with the old state excluded from the summation. Aside from this
exclusion, eq 10 is similar to weightings employed thus far for
waste recycling.
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Figure 11. Random walker model of standard deviation in calculated energies for both 128 methane molecules as a uniform fluid (a) and 128 methane
molecules in the zeolite MFI (b). Each is modeled via the proportionality in eq 12 with a single proportionality constant A for all 1y, eads and digy. For the
uniform methane fluid, A = 27.0, pcap03 =1,Rn=3.8A,and R, = 8.0 A. For methane adsorbed in MFI, A = 110.0, pcapos =10,R;n=1.0A,andR, . =
4.0 A. Choice of these parameters is discussed in the text. For each plot, the data from GPU calculations are displayed using the larger symbols with error
bars, and the results from the simple random walker model are presented with the smaller symbols and lines to guide the eye.

The inefliciency in implementing waste recycling for config-
urational bias lies in the definition of acceptance probabilities.
In order to determine an acceptance ratio for a specific trial state
i, we must generate a set of trial old states {o|i} from the state
i in order to obey superdetailed balance. Given these unique sets
of old trial states, the acceptance probability for any state i is

defined as
vt
= min|l,—————

w({o'li})

Since a different set {0’|i} must be generated for each proposed
trial state i, a total of Npyop(Nprop — 1) new particle positions and
new energies must be evaluated in order to fully leverage waste
recycling coupled to multiproposal MC, instead of N, en-
ergies, as is the case for our MDP algorithm. A waste recycling ex-
pression similar to the above CBMC algorithm has been success-
fully and efficiently employed by Athénes and Calvo'® in the
context of replica exchange. However, in replica exchange simu-
lations, the associated acceptance ratios require no new calcula-
tions of energies and simply require the rescaling of previously
determined energies by new factors f3.

Our proposed approach for multiproposal waste recycling
involving the construction of random walks, as stated in subsec-
tion 4.3, yields correct averaged results which are invariant to the
number of proposals. Furthermore, it allows inclusion of all
calculated energies into the waste-recycling expression for accu-
mulating averages. In the implementation based on constructing
a random walk chain, no calculated energies lie fallow. As an
added benefit, since this approach is constructed via Barker-like
acceptance ratios rather than Metropolis-like acceptance ratios,
we may employ the optimal estimator discussed in section 4.5.

(11)

acc(o — i)

APPENDIX C. SIMPLE MODEL FOR MDP PARAMETERS

The variance in the average energy for the MDP waste-re-
cycling algorithm has a rather unusual functional form, as shown
in Figure 4. With the considerations outlined in section 5.2, we
may quantitatively model the variation in standard deviation as a
function of d,,.x and #yreaqs. We display our model results in
Figure 11 for both the standard deviations for methane in
MFI and for pure methane. For each value of d,,,,, and iy reads)

3221

we determine the number densities associated with finding a posi-
tion on the random walk a certain distance r from the origin.
These densities are calculated on the basis of a total of 10°
distinct random walks constructed numerically following the
algorithm employed in this paper for the WRMC simulations and
accounting for periodicity as the paths are constructed. Each
number density N(7;dmaohreads) 18 initially calculated such that
f 0 N(7;dmaxsMihreads) A7 = Mehreads — 1 and is subsequently capped
at each r to be at maximum pcap4nr2. This N (r;dmwnthreads,pcap
thereby encompasses effects due to the spherical geometry at
each r as well as the limits on the effectiveness of higher sampling
number density. The standard deviation on a calculation is
hypothesized to scale inversely with the square root of the
number of meaningfully sampled points. We express this as

. (12)

std.dev. o<

Rinax
1 + / N(V; dmax) Nthreadss pcap) dr
R,

min

where the original position is always included as a meaningful
point and all other sampled points are solely included if they are
between R;, and R, and have not exceeded the local density
Peap-

1P§s shown, in Figure 11, this basic model captures semiquanti-
tatively the features of the standard deviation of energy as a
function of d,,,,, and of fy e.qs for both a uniform Lennard-Jones
fluid of 128 methane molecules with the MFI framework
removed (corresponding to po” = 0.156) and for 128 methane
molecules adsorbed in eight unit cells of the zeolite MFI. For
methane as a uniform LJ fluid, p.,, is set by the relationship
pcapo3 = 1,and R, and Ry, are set to 3.8 A and 8.0 A, approxi-
mately 0 and 20, perfectly reasonable parameters for a moder-
ately dense gas. For methane adsorbed in the zeolite MFI, we
used substantially different parameters based on knowledge of
the organization of methane in MFL For this degree of adsorp-
tion, the methane sites are separated by approximately S A, and
within the channels, they organize in a single file. As such, we set
Riin to be 1.0 A in order to account for meaningful sampling
within the radius of the MFI channel. And we choose R, to be
4.0 A since distances greater than this yield configurations
overlapping with their nearest neighbors. Given that the highly
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packed and nonuniform nature of this system introduces greater
corrugations, we choose pc,, to be 10 times higher. The agree-
ment between our simple random walker model and the GPU
calculated standard deviations is quite favorable for both the
uniform and nonuniform systems, as displayed in Figure 11.
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